Invariant conjugate analysis for exponential families

نویسندگان

  • Pierre Druilhet
  • Denys Pommeret
چکیده

There are several ways to parameterize a distribution belonging to an exponential family, each one leading to a different Bayesian analysis of the data under standard conjugate priors. To overcome this problem, we propose a new class of conjugate priors which is invariant with respect to smooth reparameterization. This class of priors contains the Jeffreys prior as a special case, according to the value of the hyperparameters. Moreover, these conjugate distributions coincide with the posterior distributions resulting from a Jeffreys prior. Then these priors appear naturally when several datasets are analyzed sequentially and when the Jeffreys prior is chosen for the first dataset. We apply our approach to inverse Gaussian models and propose full invariant analyses of three datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

Bayesian approach to cubic natural exponential families

For a natural exponential family (NEF), one can associate in a natural way two standard families of conjugate priors, one on the natural parameter and the other on the mean parameter. These families of conjugate priors have been used to establish some remarkable properties and characterization results of the quadratic NEF’s. In the present paper, we show that for a NEF, we can associate a class...

متن کامل

Invariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family

Based on a given Bayesian model of multivariate normal with  known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e.  conditional and unconditional empirical Bayes confidence interval), the empiri...

متن کامل

Gibbs Sampling, Exponential Families and Coupling

We give examples of a quantitative analysis of the bivariate Gibbs sampler using coupling arguments. The examples involve standard statistical models – exponential families with conjugate priors or location families with natural priors. Our main approach uses a single eigenfunction (always explicitly available in the examples in question) and stochastic monotonicity.

متن کامل

Gibbs Sampling, Conjugate Priors and Coupling

We give a large family of simple examples where a sharp analysis of the Gibbs sampler can be proved by coupling. These examples involve standard statistical models – exponential families with conjugate priors or location families with natural priors. Many of them seem difficult to succesfully analyze using spectral or Harris recurrence techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017